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Supplementary Note 1. THEORY OF NN TRAINING BY BACKPROPAGATION

Here we reproduce the salient equations of the backpropagation training method for reference; a full explanation
can be found in e.g. [11]. We index the neuron vector at each layer with i, j and k respectively. We encode an input

xi, weight matrix W
(1)
ji and bias b

(1)
j in the first layer, and weight matrix W

(2)
kj in the second layer. MVM-1, hidden

layer activation and MVM-2 are then described as follows:

z
(1)
j =

N∑
i=1

W
(1)
ji xi + b

(1)
j ; (S1)

a
(1)
j = g

(
z
(1)
j

)
; (S2)

z
(2)
k =

M∑
j=1

W
(2)
jk a

(1)
j . (S3)

Note that the bias is applied only in MVM-1 but not in MVM-2.
We consider two types of loss function: categorical cross-entropy (CCE)

L = −
∑
k

tklog
(
a
(2)
k

)
(S4)

and mean-squared error (MSE)

L =
1

2

∑
k

∣∣∣a(2)k − tk

∣∣∣2 (S5)

where tk is the one-hot label (0, 1) or (1, 0). In the case of CCE, the second-layer activation a
(2)
k is found by applying

the softmax activation function to z
(2)
k :

a
(2)
k =

ez
(2)
k∑

k e
z
(2)
k

(S6)

For MSE, there is no second-layer activation: a
(2)
k = z

(2)
k .

In both cases, the gradients of the loss function can be calculated to be

∂L
∂W

(2)
kj

= δ
(2)
k · a(1)j , (S7)

∂L
∂W

(1)
ji

= δ
(1)
j · xi (S8)

and

∂L
∂b

(1)
j

= δ
(1)
j , (S9)

where

δ
(2)
k =

(
a
(2)
k − tk

)
(S10)

and

δ
(1)
j = ρ

(1)
j · g′

(
z
(1)
j

)
, (S11)
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with

ρ
(1)
j =

(
L∑

k=1

w
(2)
kj δ

(2)
k

)
. (S12)

We can therefore directly calculate the second weight matrix update, but to calculate the updates to the first layer,
we use our optical backpropagation scheme to optically perform the calculation (S11).
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Supplementary Note 2. EXPERIMENTAL SETUP

Fig. S1 presents the full diagram of the experimental setup, whose simplified version can be found in Fig. 1 of the
main text. Fig. S3 and Fig. S4 show the beam paths and field patterns for the forward and backward propagating
beams respectively.

Each fan-in and fan-out process is performed by a set of three cylindrical lenses, equally spaced at f = 150 mm
between the input and output planes. The central lens, of focal length 2f = 300 mm, performs the Fourier transform
of the field in the input plane into the output plane with respect to one of the transverse coordinates. The other two
cylindrical lenses, oriented at 90◦ with respect to the central one, have the focal length f = 150 mm and implement 4f
imaging of the input plane to the output plane with respect to the other transverse coordinate, preventing unwanted
diffraction and maintaining the correct phase and amplitude profile. The sets CL-1 and CL-2a perform a Fourier
transform of the horizontal dimension while imaging the vertical dimension. The set CL-2b does the opposite. Note
that because the ONN input in both directions is supplied in the ‘fanned-out’ state, no Fourier transformation is
required between the forward input and SLM-1 as well as between the backward input and SLM-2; the inputs are
simply imaged onto the SLMs.

Our ONN uses a coherent beam to encode real-valued elements. Below we describe how we encode and detect
real-valued numbers.

The forward ONN input contains the test set element coordinates, which are always positive and can hence be
encoded by the DMD. On the other hand, the errors that constitute the backward ONN input can take negative
values. We encode their absolute value by means of the DMD, and subsequently apply a π phase shift to encode
negative numbers by reflecting the beam from a dedicated section of SLM-1. Fig. S2(b) depicts the patterns generated
on the DMD and SLM that encode the input vector and weight matrix in the forward beam, and real-valued error
vectors in the backward beam. Both DMD and SLMs in our setup are reflective, but for illustrative purpose we
assume they are transmssive in our schematics.

The weight matrices are encoded by means of a phase grating on the phase-only LC-SLMs. By spatially varying
the offset and height of the grating, we can control both the amplitude and phase of each weight matrix element. The
matrix-vector dot products are then diffracted into the first diffraction order, which is isolated by a spatial filter after
reflection from the LC-SLM [12, 29].

We measure the sign of the fields in the two layers by means of homodyne detection, similar to our previous work
[12]. Dedicated regions on the DMD create uniform reference beams, labeled R1, R2 and R3, which pass through the
system along with the forward and backward MVM signals. The relative size and position of these reference encoding
regions are indicated in Fig. S2(b).

SLM1

SLM2 slit

slit

DMD1

Laser

inputDMD2

CCD3

CCD1

CCD2

 

Spherical lens

Cylindrical lens

Beam splitter

Mirror

CL-2a

CL-1

VC

CL-2b

FIG. S1. Experiment schematic. The forward beam is shown in red, and backward beam in blue. Two pixel regions of the
same DMD are used for the input of both the forward and backward paths. CL-1, CL-2a and CL-2b are the three cylindrical
lenses discussed in the main text. VC: vapor cell, CCD: digital camera.
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FIG. S2. Experimental setup for encoding both forward and backward propagating beams. (a) Illustration of using
two halves of DMD and SLM1 to simultaneously encode both the forward and backward propagating beams. (b) Example
DMD and SLM-1 patterns. Left side encodes forward signal and right side encodes backward signal. (c) Illustration of example
field amplitudes generated in forward and backward signals after the modulation by DMD and SLM-1.

The reference beam for the detection of the MVM-2a output, R2, is displaced vertically with respect to the forward
signal beam. In this way, the R2 reference beam does not interfere with the signal until the very last cylindrical lens
set, which acts to perform the MVM summation as well as mix the signal and R2 reference beam. For the second
layer, the R2 reference is always brighter than the signal, and because the two beams follow the same path they are
phase-stable.

A weak reference beam for the sign measurement of the MVM-1 output, R1, is displaced horizontally with respect
to the forward signal beam. The R1 reference beam then overlaps with the signal at the conjugate planes of first-slit
and vapor cell, due to the action of CL-1. After the cell, the overlapping beams are tapped off via a beam splitter for
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FIG. S3. Optical path of the forward beam. The images are representative optical field amplitude patterns as the beam
propagate throughout the system.

measurement by CCD1.
The reference beam for the detection of the (backward) MVM-2b output, R3, is displaced horizontally with respect

to the backward signal beam. The beam then overlaps with the signal at the conjugate planes of second-slit and
vapor cell, due to the action of CL-2. After the cell in the reverse direction, the overlapping beams are tapped off via
a beam splitter for measurement by CCD3.

Multiple sequential intensity measurements are made with CCD1, CCD2 and CCD3 in order to measure the three
desired vectors: a(1), z(2) and δ(1). These measurements are summarized in Tab. S1

In the first step, the forward signal and R2 reference are turned on, and all other signals and references turned off.
Intensity measurement of the interfered beams at the output by CCD2 gives I2 = |Ez(2) +ER2|2 and the MVM result
can be simply read out as Ez(2) =

√
I2−ER2. The R2 reference beam passes through the activation vapor cell spatially

separated from the signal in the vertical direction, so experiences some attenuation but remains uniform, and does not
interfere with the pump-probe process. Two other intensity measurements, I1a = |Ea(1) |2 and I3a = Ipump = |Epump|2
are simultaneously taken with CCD1 and CCD3 respectively. The latter term is leakage of the forward signal into
CCD3 due to fluorescence of the beam in the vapor cell, and is later used to make corrections to the backward signal
measurement.

In the second step, both the forward signal and R1 reference beam are turned on, and other beams are turned off.
The signal and R1 reference combine and interfere at the output of MVM-1, and intensity measurement with CCD1
yields I1b = |Ea(1)+ER1|2 , allowing us to determine whether Ea(1) is positive or negative by comparing the magnitudes
of I1b and I1a. The two measurements are necessary because the combination of the signal and reference beams is
affected by the SA cell in a nonlinear fashion. The final value can be calculated as Ea(1) = sign (I1b − I1a) ·

√
I1a.

Then the backward signal requires three intensity measurements (steps 3-5) for subtraction of all background terms.
All three measurements are recorded with CCD3 after tap-off of the beam after the vapor cell. Recall we denote the
result of MVM-2b as ρ(1), so we denote the field Eρ(1) when we have only backward signal and no forward signal. When
forward signal is present, due to the pump-probe interaction in the vapor cell the field is modulated to approximate
the result δ(1) = ρ(1) · g′(z(1)), and we denote the field Eδ(1) .
In the third step, only the backward signal is turned on, and the term I3b = |Eρ(1) |2 is measured by CCD3. This
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FIG. S4. Optical path of the backward beam. The image next to SLM1 is the static phase mask, and other images are
representative optical field amplitude patterns.

TABLE S1. Sequence of optical measurement for optical training. CCD1 is used to measure forward beam at the
hidden layer, CCD2 is used to measure forward beam at the output layer, and CCD3 is used to measure backpropagated error
beam at the hidden layer.

Step Camera Measurement FW BW R1 R2 R3 Calculation
signal signal

1 CCD1 I1a = |Ea(1) |
2

CCD2 I2 = |Ez(2) + ER2|2 ON OFF OFF ON OFF z(2) =
√
I2 − R2

CCD3 I3a = Ipump = |Epump|2 Pump fluorescence background

2 CCD1 I1b = |Ea(1) + ER1|2 ON OFF ON OFF OFF a(1) = sign(I1b − I1a) ·
√
I1a

3 CCD3 I3b = |Eρ(1) |
2 OFF ON OFF OFF OFF Unabsorbed probe background

4 CCD3 I3c = |Eρ(1) + ER3|2 OFF ON OFF OFF ON

5 CCD3 I3d = |Eδ(1) + Epump + Eρ(1) |
2 ON ON OFF OFF OFF δ(1) = sign(I3c − I3b) ·

(√
I3d −

√
I3a −

√
I3b

)
gives the background term due to the unabsorbed probe signal. In the fourth step, both the backward signal and R3
reference are turned on, and all the other beams are off, and the term I3c = |Eρ(1) +ER3|2 is measured, allowing us to

determine the sign of ρ(1). This will equal the sign of δ(1) as the pump-probe process has no affect on phase. Finally,
in the fifth step, both forward and backward signal are turned on, and all the reference beams are off. The two beams
interact within the vapor cell under the pump-probe mechanism. The intensity of the backward signal is measured
as I3d = |Eδ(1) + Epump + Eρ(1) |2, where there are two undesired background terms due to pump fluorescence and

unabsorbed probe. The final result is measured as Eδ(1) = sign (I3c − I3b) ·
(√

I3d −
√
I3a −

√
I3b
)
.
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Supplementary Note 3. ADDITIONAL DATA ON OPTICAL TRAINING

Figure S5 shows the learning curves and the decision boundary evolution for the two training sets, akin to Fig. 3(a)
in the main text.

Figure S6 compares the learning curves between optical training and digital training for the Rings dataset. The
optical learning curves are the same as that shown in Fig. 3(b) in the main text. As we can see, optical training
converges at a similar rate with digital training, despite the perturbation of experimental imperfections and noise.
Digital training can achieve high validation accuracy, but this accuracy is not tested on the ONN. After applying the
digitally trained weights to the ONN, the test accuracy is below that of optical training.

Figure S7 shows the evolution of optically estimated gradients and digitally calculated gradients during the training
process for the three datasets. We can see that the optically estimated gradients match the digitally calculated
gradients very well throughout the training process in spite of some small deviation. When digital gradients approach
zero, so are optical gradients. When digital gradients fluctuate, optical gradients show the same pattern. The
fluctuation is a nature of stochastic gradient descent. Besides, in the early training phase for the XOR dataset, it’s
evident that both gradients are highly correlated, which is another unambiguous evidence of optical gradient descent.

FIG. S5. Optical training result for the ‘XOR’ and ‘arches’ datasets.(a) Mean and standard deviation of validation
loss and accuracy during optical training of the ‘XOR’ dataset. Shown above are example boundary plots of the test dataset
after certain epochs. (b) As above, for the ‘arches’ dataset.
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FIG. S6. Comparison of the accuracy and loss curves between optical training and digital training for the Rings
dataset.

We note that these gradients are further scaled by the learning rate and the Adam optimiser before being applied
to update the weights. Therefore, though the gradients may fluctuate around zero as training iteration increases, the
actual weights have converged.

Figure S8 shows one time-lapse frame of Supplementary Video 1, which records a complete run of end-to-end optical
training for the Rings dataset. As the weight and bias parameters are updated, the loss function and accuracy plots
converge quickly, as reflected in the evolution of the decision boundary. The activation values and backpropagated
error values were recorded by cameras and plotted against theoretical values that are calculated from MVM and SA
function.
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FIG. S7. Evolution of optically estimated and digitally calculated gradients for (a) ‘Rings’ dataset, (b) ‘XOR’
dataset, and (c) ‘Arches’ dataset. Each subfigure shows gradients for each of the ten weight matrix elements at the first
layer. These gradients are subsequently scaled by the learning rate and Adam optimiser before being applied to update the
weights.
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FIG. S8. Time-lapse of one complete end-to-end optical training process for the Rings dataset (Video 1). First
column: evolution of network loss (top), validation accuracy (middle) and decision boundary (bottom) during optical training.
Middle columns: recorded camera images of CCD1 (‘Layer 1’), CCD2 (‘Layer 2’) and CCD3 (‘Backprop’). Associated plots
show the optically-calculated values (‘measured’) plotted against the digitally-calculated theoretical values (‘theory’), for each

of a(1) (top), z(2) (middle), and δ(1) (bottom). Different colors represent values of different neurons. Last column: evolution

of first-layer weight matrix W (1) (‘weights 1’) and bias vector b(1) (‘bias 1’) and evolution of second-layer weight matrix W (2)

(‘weights 2’). Values are normalized within +1 (dark blue) and −1 (dark red).
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Supplementary Note 4. OPTICAL BACKPROPAGATION THROUGH THE LINEAR LAYER

To carry out optical backpropagation in an ONN, the linear layers need to be bidirectional such that light can
propagate in both directions, and achieve a transpose of the weighting or transform matrix in the backward direction.
In this section, we will explain how to achieve optical backpropagation through three types of linear layers: MVM,
diffraction and convolution layer.

A. Photonic MVM

Our optical MVM is built with free-space optics using lenses and spatial light modulators following the ‘Stanford
multiplier’ design first proposed by Goodman in 1978 [28]. There are of course different ways to achieve optical MVM.
For example, on the photonic platform, one can also perform MVM using a crossbar array architecture, as illustrated
in Fig. S9(a). In this setup, a micro-resonator is placed at each crossing of two waveguides. Forward propagating
signal enters from the left side of the crossbar array and exits from the bottom. Each element of the weight matrix
is controlled by a variable beamsplitter — for example, a micro-resonator, so the transmission and reflection of the
signal at each crossing depends on the resonance condition, which can be electrically controlled. Forward signals from
multiple rows are thus weighted and summed up to yield the MVM output. To perform optical backpropation, we
can inject the error vector from the bottom. The microresonators will then reflect it towards the left side, such that
the signal and error beams counter-propagate. A more convenient option is to send the error vector from the top side
of the crossbar array and direct it towards the right output ports [30]. The error vector from different columns are
weighted and summed up, yielding MVM result with a transpose of the weight matrix. The signal and error beams
should be separated either spectrally or temporally, such that the cross-talks or undesired interference at the output
ports can be minimized.

Similar backpropagation is possible in other photonic implementations of MVM, such as that based on networks
of Mach-Zehnder interferometers (MZIs). However, the crossbar array case is simpler in that the reflectivity of every
beamsplitter directly corresponds to an element of the weight matrix. Hence the backpropagation process as described
in this paper will directly yield the gradient for the beamsplitters update. In the case of MZI network, the relation
between the weight matrix and the beamsplitter reflectivities is complicated. An additional calculation is therefore
needed to obtain the gradient of each phase shifter setting. As shown recently shown both theoretically [24] and
experimentally [25], this additional computing step can also be implemented optically.

B. Diffraction layer

In recent years, diffractive neural networks have attracted significant research interest [6], and they have been
shown to achieve high performance in various machine learning and machine vision tasks such as image recognition
and object tracking. Diffraction is a natural optical phenomenon, and diffractive layers can be constructed using 3D
printed masks, liquid-crystal SLMs and meta-materials. In Fig. S9(b) we depict the operation principle of a diffractive

neural network. In this network, neurons at neighbouring layers are connected via diffraction, and we denote W
(l−1)
ki

as the complex factor acquired by the amplitude of the light field propagating from neuron z
(l−1)
k at layer l − 1 to

neuron z
(l)
i at layer l. These coefficients are fixed by the ONN geometry and usually not trainable once the network

is fabricated. Trainable parameters in the network are the complex transmission coefficients t
(·)
· of each neuron at

different layers.
During the forward direction, signals propagate from one layer to the next as

z
(l)
i =

∑
k

W
(l−1)
ik t

(l−1)
k z

(l−1)
k . (S13)

To train the network, we calculate the gradient of the loss function with respect to the transmission coefficient of each
layer:

∂L
∂t

(l)
i

=
∑
p

∂L
∂z

(l+1)
p

· ∂z
(l+1)
p

∂t
(l)
i

=
∑
p

∂L
∂z

(l+1)
p

W
(l)
pi z

(l)
i , (S14)
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FIG. S9. Different linear optical layers supporting direct optical backpropagation. (a) A photonic crossbar MVM
built with waveguides and micro-resonators. (b) A diffractive neural network constructed with multiple phase or amplitude
masks. (c) Optical convolution layers implemented via 4f lens configurations.

where W
(l)
pi is known a priori, and z

(l)
i can be measured experimentally in the forward propagation step. We denote

δ
(l+1)
p = ∂L/∂z(l+1)

p as the error vector at layer l + 1, then the error vector at the preceding layer l can also be
calculated by applying the chain rule of calculus:

δ
(l)
i =

∑
p

∂L
∂z

(l+1)
p

· ∂z
(l+1)
p

∂z
(l)
i

=
∑
p

δ(l+1)
p W

(l)
pi t

(l)
i . (S15)

The last line indicates that the error vector at a given layer is calculated by multiplying the error vector at a subsequent
layer with the diffractive connection matrix transpose, then element-wise multiplied with the mask transmission
coefficients. This is exactly the optical backpropagation process. The physical forward and backward propagation
process is better evidenced by re-writing Eq. S13 and Eq. S15 in the matrix form:

z(l) = z(l−1) · t(l−1) ×W (l−1), (S16)

δ(l) = δ(l+1) × [W (l)]T · t(l). (S17)

C. Convolution layer

The convolutional neural network represents a basic type of neural networks, and it is ubiquitous in processing
complex machine vision tasks. It can capture key features of images efficiently through the use of convolution kernels
layer-by-layer. It is well known that convolution is equivalent to multiplication in the Fourier domain, and Fourier
transform can be optically performed with a simple lens.

Figure S9(c) depicts two cascaded optical convolution layers using two lenses per layer comprising a 4f system. The
first lens at layer l − 1 performs Fourier transform of the incoming signal z(l−1)(x):

z̃(l−1)(k) = F [z(l−1)(x)] =

∫
z(l−1)(x)e−ikxdx. (S18)
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Then a mask W (k) (which is the Fourier transform of the convolution kernel) placed at the focal plane modulates the
signal spectrum z̃(l−1)(k), and a second lens performs another Fourier transform to complete the convolution:

z(l)(x′) = F [z̃(l−1)(k)W (l−1)(k)] =

∫∫
z(l−1)(x)W (l−1)(k)e−ik(x+x′)dxdk. (S19)

To update the kernels, we calculate the gradient of the loss function with respect to the transmissivity W (k):

∂L
∂W (l−1)(k)

=

∫
∂L

∂z(l)(x′)

∂z(l)(x′)

∂W (l−1)(k)
dx′

=

∫∫
∂L

∂z(l)(x′)
z(l−1)(x)e−ik(x+x′)dxdx′

=

∫∫
δ(l)(x′)z(l−1)(x)e−ik(x+x′)dxdx′

= z̃(l−1)(k) · δ̃(l)(k). (S20)

In the calculation above we have introduced the error vector δ(l)(x′) =
∂L

∂z(l)(x′)
and its Fourier spectrum δ̃(l)(k) =∫

δ(x)e−ikx′
dx. This result means that the kernel gradient is the dot product of the signal spectrum and error vector

spectrum. Next we show how the error vector spectrum can be obtained by applying the chain rule of calculus:

δ̃(l)(k) =

∫
∂L

∂z(l)(x′)
e−ikx′

dx′

=

∫∫
∂L

∂z(l+1)(x′′)

∂z(l+1)(x′′)

∂z(l)(x′)
e−ikx′

dx′dx′′

=

∫∫∫
δ(l+1)(x′′)W (l)(k′)e−ik′(x′+x′′)e−ikx′

dk′dx′dx′′

=

∫
δ(l+1)(x′′)W (l)(k′)e−ik′x′′

dx′′
∫

e−i(k′+k)x′
dx′

= δ̃(l+1)(−k) ·W (l)(k). (S21)

Here we used the fact that
∫
e−i(k′+k)x′

dx′ is the Dirac delta function with respect to k′ + k.
From this result, we see that the error vector spectrum at layer l is obtained by multiplying the error vector

spectrum at the next layer l+ 1 with the kernel at layer l. The negative sign in front of k in δ̃(l+1)(−k) is due to the
image inversion in a 4f system. Therefore, optical convolution layers also support direct optical backpropagation.

To implement optical pooling after the convolution layer, we can now include an aperture function A(k) on top of
the kernel mask W (k), such that the field distribution z(l)(x′) in Eq. (S19) is further convolved with the point-spread
function F [A(l−1)(k)]. For example, a Sinc function aperture on top of the kernel mask would produce average pooling
result. Since the aperture function can be absorbed into the mask W (k) at each layer, the optical backpropagation
analysis (Eq. (S18) - Eq. (S21)) is still valid for a convolution layer following by average pooling.
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